Results 1 to 8 of 8
  1. #1
    ph2ocraft's Avatar
    Join Date
    Apr 2006
    Campbell, Ca.

    Detonation Article

    By Kevin Cameron The Cellar Dweller

    I first encountered detonation back in 1966, and I didn't know what it was. Fortunately for me, it was a light case, and the only symptoms were small holes being eaten into the edges of a motorcycle cylinder head's squish band.

    Later, pushing to higher compression, I would generate my share of pistons that were detonated away until their rings hung out into empty space. I would learn to look out for the tiny, ash gray flake of quenched aluminum on a spark plug, or in water-cooled engines, for the sudden and otherwise unexplained rise in engine temperature. And I would still be curious about those dusty holes, eroded into cylinder heads.

    Books will tell you what Harry Ricardo learned back in 1918; that detonation is not the same as preignition. Preignition is lighting of the charge before the spark , by some hot object in the combustion chamber usually the overheated center wire of a spark plug whose heat range was too hot for the application. Preignition soon provokes detonation, so the confusion is understandable.

    Detonation, by contrast, is self ignition of some of the last parts of the charge to burn the so-called "end gas" out at the edges of the combustion chamber after the spark has already ignited and mostly burned the charge. This self igniting endgas does not then burn normally, as a flame front spread by turbulence at the usual speed of a few tens of feet per second. This gas burns at the local speed of sound, which is very high because the temperature is high. This form of combustion, called detonation, forms a shock front, a sudden jump in pressure that propagates at thousands of feet per second.

    When it hits parts, it hits hard. If we hear it al all, it is as a high, dry, irregular clicking, not unlike the reverberating sound of rocks struck under water. Detonation's pressure front can damage bearings by its hammering shock, but the real problem is what it does to an engine's natural, internal insulation.

    In any situation in which gases move next to solid surfaces, there is a layer of significant thickness that remains largely stagnant because it is attached to the surface. In internal combustion engines, this boundary layer quite effectively shields the engine's metal internal surfaces from direct contact with combustion gas, keeping them cooler than they would otherwise be.

    When detonation begins even light deto this boundary layer is scoured off by the impacting shock waves, and heat transfer from hot gas to cool metal accelerates. In only a very few detonating cycles, piston temperatures rise dramatically, and the rest of the parts exposed to combustion gas aren't far behind.

    What is strange to many people is that as this happens, exhaust gas temperature falls. This seems odd because people associate detonation with heat, and heat with failure. But the fact is that as you jet an engine down, its exhaust temperatures peak, not when the mixture becomes lean (that is, too little fuel to react with all the oxygen in the air charge), but when the mixture is chemically perfect. Exhaust gas temperature falls when detonation begins because the engine's internal insulation is destroyed; that being so, some heat that would otherwise go out the exhaust is now being diverted into the piston, head, and cylinder walls. Because those parts are getting hotter, the exhaust gas becomes colder.

    Those of us who began racing before water cooling arrived tend to think that engines get hotter the more we jet them down. With air cooling, this seems to be true, but isn't. The engine runs cool when it's rich because the extra fuel reduces peak flame temperature, and as we jet down towards chemically correct mixture, the engine runs hotter and hotter. Often, in a modified engine with high compression, this detonation begins even before we reach correct mixture and peak flame temperature. Then the engine really heats up. This leaves us with the idea that leaning down the mixture raises engine temperature, in a straightline relationship.

    Now we know, from our experiences with water-cooled engines, that power, engine temperature, and exhaust gas temperature all rise as we jet down until we go beyond chemically correct mixture. When we do, power, engine temperature, and exhaust gas temperature all begin to fall again. We couldn't see this before, with air-cooling, because the power we were making was overwhelming the engines the engine's cooling ability. But it makes perfect sense because heat release in combustion depends upon finding enough oxygen so that each and every hydrogen and carbon in the fuel is completely reacted to form water and carbon dioxide. Any fuel left over is potential chemical energy unreleased which is why running lean makes less power. On lay well cooled engine that is not detonating, you can jet down until it starts to slow down.

    Now back to detonation. The above explanation is the common one, but it leaves important questions unanswered. For example, why does detonating combustion travel at the local speed of sound, and not at normal burning speed? Why does the endgas auto ignite, rather than simply wait there like a stand of trees in the path of a forest fire? Understanding how this comes about helps to understand how the variables that affect detonation generate their effects and it helps to fend off the phenomenon that sets the upper limits on performance.

    There are two basic forms of combustion, deflagration and detonation. In deflagration, the propagation of combustion is carried out by simple convection; the hot combustion gas heats what is ahead of it, raising its temperature to the ignition point. Because this process of heating what lies ahead takes time, it is relatively slow. The burning of a quiescent gasoline air vapor is in fact slow only a foot or so per second. Combustion in an engine cylinder is much faster than this because of turbulence, which so wrinkles the flame front that its area becomes hugely enlarged. This area, multiplied times the slow quiescent combustion speed, computes out to a very large volume combustion rate.

    Detonation is a different animal, and not all gaseous mixtures will support detonation. It is a form of combustion in which the unburned material is heated to ignition at least partly by shock compression, as the detonation wave moves a the local speed of sound through the medium. This has to happen very quickly, so fuels with simple molecules or those with low stability lend themselves to this form of combustion. Now how does the endgas ignite by itself? It does so when its temperature is raised by any combination of effects to some critical value in the range of 900-1000 degrees F.

    In a running engine, air is drawn in at some ambient temperature, and this air then begins to pick up heat from the hot internal engine surfaces it contacts. Finally it enters the actual cylinder, where is it heated by even hotter surfaces. Trapped there, it is heated again by the process of compression.

    In this heating process, some little discussed chemical reactions begin to occur in the fuel. Called preflame reactions, these take the form of slow, partial breakdown of the least durable types of fuel molecule. Fuel hydrocarbons have three basic forms; straight carbon chains, branched chains, and ring structures. Temperature is a measure of average molecular activity, but there are always some gas molecules moving significantly faster than the others. These faster moving molecules hit and break some of the less durable fuel molecules, dislodging some of their more weakly bonded hydrogen atoms. This released hydrogen is very reactive (normally hydrogenous travel in bonded pairs, but his is atomic hydrogen) and instantly pairs with an oxygen from the air to form what is called a radical, a chemical fragment that is highly reactive because if contains and unpaired electron. Its attraction for the missing electron is so great that it can snap one out of other chemical species it happens to collide with, thereby breaking it down as well.

    At some point in the compression stroke, the spark ignites the mixture and combustion begins. The burned gases, being very hot, expand against the still unburned charge, compressing it outward into the squish band. This compression rapidly heats the unburned charge even more, accelerating the preflame reactions in it. As a rule of thumb, the rate of chemical reaction doubles every seventeen degrees F. All this while, the population of reactive molecular fragments radicals is increasing in the unburned endgas. If this process of heating takes long enough, and reaches a temperature high enough, this population of radicals becomes great enough that its own reaction rate one radical creating more and more through further reactions accelerates into outright combustion. This is autoignition.

    Now why does this heated, chemically changed endgas detonate instead of simply burning? The fuel in the endgas is no longer ordinary gasoline. The preflame reaction that have taken place in it have changed it into a violent explosive much like a mixture of hydrogen and air, or acetylene and oxygen. It is in a hair-trigger state, being filled with reactive fragments from preflame reactions. When it autoignites spontaneously, combustion accelerates almost instantly because the material is so easily ignited now. The combustion front accelerates to the local speed of sound, igniting the material it passes through simply by suddenly raising its temperature, through the shock wave it has now become.


    Anything that contributes to lowering the temperature that the endgas reaches will make detonation less likely. Anything that slows the process of conversion from normal gasoline into a sensitive explosive, will make detonation less likely. Anything that speeds up combustion, so that is it completed before the conditions needed for detonation can develop fully, will make deto less likely.

    Therefore the following will work;

    (1) Lower intake temperature

    (2) Lower throttle position, lower volumetric efficiency, or reduced turbo boost the less mixture that enters the cylinder, the less it is heated by compression.

    (3) Lower intake pipe, crankcase, and/or cylinder, piston, or head temperatures. This year's Yamaha 250cc road race engine, for instance, has a copper cylinder head insert to conduct combustion heat away faster, resulting in a lower combustion chamber surface temperature.

    (4) Lower compression ratio. The less you squeeze it, the less it is heated.

    (5) A more breakdown resistant fuel, such as toluene or isooctane. If straight chain molecules are not present, the fuel will not be broken down so rapidly by preflame reactions.

    (6) A negative catalyst something that will either pin down active radicals or convert them into something harmless. Tetraethyl lead, MMT, or other antiknock compounds are the medicine.

    (7) Retarded timing shortens the time during which proknock reactions can take place.

    (8 Incylinder turbulence or anything else that will speed up combustion (faster burning fuel such as benzene). This works by completing combustion before the time bomb of preflame reactions cooks long enough to cause autoignition.

    (9) Higher engine rpm This simply shortens the time during which the mixture is held at high temp. In Honda experiments in the 1960's, they found that an engine's octane requirements began to decrease steadily over 12,000 rpm, and were under 60 octane up near 20,000. In a more accessible example, note that engines knock when they are "lugged" run at low rpm, wide open throttle and stop knocking promptly when you shift down a gear and let the engine rev up more. This stops deto by not allowing enough time for the reactions that cause it.

    (10) Redesigning troublesome exhaust pipes. Some pipes give great numbers on the dyno, but can't be used because they cause seizures. They either simply overcharge the engine in some narrow rpm band (pushing it into detonation just as too much turbo boost would do), or back pump mixture from the header pipe that has picked up too much heat (this is why nobody heat wraps header pipes anymore).

    (11) Avoiding excessive backpressure. Exhaust pipes always create back pressure, but the more there is, the higher the fraction of hot exhaust gas that will be unable to leave the cylinder during exhaust. Its heat, added to the fresh charge that next enters the cylinder, may push the engine over the line into detonation. Sometimes a one or two millimeter reduction in tailpipe ID will get you a couple of extra horsepower, but it may also push enough extra heat into the charge to make the engine detonate after a few seconds.

    The number of ways of playing footsie with detonation is endless, but nothing works every time. This guarantees that we will never be bored, and will never run out of seized pistons.

  2. #2
    ph2ocraft's Avatar
    Join Date
    Apr 2006
    Campbell, Ca.

    Plug Reading

  3. #3
    Moderator beerdart's Avatar
    Join Date
    Aug 2006

    Race Fuel Octane Explained

    Wrenching with Rob--Chemical Soup: The Meaning of Gas.

    By Robin Tuluie Editor's Note--This is the first in a series of "Wrenching with Rob" articles, in which Vintage Editor Robin Tuluie will discuss, in depth, technical and theoretical topics that make motorcycles function.
    In many high-performance situation, riders clamor for higher octane fuels, thinking this will give them additional horsepower and, thus, an advantage over the competition. But this is not the case--adding higher-octane race fuel to your motorcycle may actually produce less horsepower. Here's why: Octane, an arbitrary number which is calculated as the average of the Research Octane Number (RON) and the Motor Octane Number (MON), and is only an indic ation of a fuel's sensitivity to knock, which is typically pressure-induced self-ignition. (Of these two ratings, MON is more applicable to racing fuels as it is measured under high load and high speed conditions.)
    Octane, as you can see, is not a measure of how much power--or, more correctly, specific energy--is contained in a fuel. And remember that leaded high-octane race fuels burn slower than most unleaded fuels, and may reduce performance in stock or lightly modified motorcycles. A high octane rating itself, however, does not mean that the fuel is slow burning. Hence, it has no direct bearing on the power characteristics of the fuel.
    The knock tendency (and hence, the Octane rating) of a fuel is a function of the amount of free radicals present in the fuel prior to ignition and can be reduced by the addition of tetra ethyl lead, aromatics and other additives.
    Although some racing organizations still use maximum octane number as the discriminating factor for fuel legality, it is really not appropriate for racing purposes.
    Instead one should look at the amount of energy (heat) released in the burning of a particular fuel. This is described by the specific energy of the fuel. This quantity describes the amount of power one can obtain from the fuel much more accurately. The specific energy of the fuel is the product of the lower heating value (LHV) of the fuel and molecular weight of air (MW) divided by the air-fuel ratio (AF):
    Specific Energy = LHV*MW/AF
    For example, for gasoline LHV= 43 MJ/kg and AF=14.6, while for methanol LHV= 21.1MJ/kg (less "heat" than gasoline) and AF=6.46 (much richer jetting than gasoline). Using the above formula we see that methanol only has a 10% higher specific energy than g asoline! This means that the power increase obtained by running methanol, with no other changes except jetting, is only 10%. Comparing the specific energy of racing and premium pump gas you can see that there is not much, if any, difference. Only alcohol s (such as methanol or ethanol) have a slightly higher specific energy than racing or pump gas.
    Other oxygen-bearing fuels, besides the alcohols and nitromethanes, such as the new ELF fuel, will also produce slightly more power once the bike is rejected. However, at $15.00 to $20.00 at gallon for the fuel the reportedly minor (1% - 2%) improvement is hardly worth the cost for the average racer.
    The real advantage of racing gasolines comes from the fact that they will tolerate higher compression ratios (due to their higher octane rating) and thus indirectly will produce more power since you can now build an engine with a higher compression ratio o. Also, alcohols burn cooler than gasoline, meaning even higher compression ratios are possible with them, for even more power.
    The bottom line here is that, in a given engine, a fuel that doesn't knock will produce the same power as most expensive racing gasolines.
    However, it sometimes happens that when you use another fuel, the engine suddenly seems to run better. The reasons for this are indirect: First, the jetting may be more closely matched to the new fuel. Secondly, the new fuel may improve the volumetric e fficiency (that is, the "breathing") of the motor. This happens as follows: Basically a fuel that quickly evaporates upon contact with the hot cylinder wall and piston crown will create additional pressure inside the cylinder, which will reduce the amount of fresh air/fuel mix taken in. This important--but often overlooked--factor is described by the amount of heat required to vaporize the fuel, described by the 'enthalpy of vaporization' (H), or 'heat of vaporization' of the fuel.
    A high value of H will improve engine breathing, but the catch is that it leads to a different operating temperature within the engine. This is most important with two-strokes, which rely on the incoming fuel/air mix to do much of the cooling--even mode rn water-cooled two-strokes rely on incoming charge to cool the piston. For two-strokes a fuel that vaporizes, drawing a maximum amount of heat from the engine, is essential--the small variations in horsepower produced by different fuels is only of second ary concern.
    Also important is the flame speed: Power is maximized the faster the fuel burns because the combustion pressure rises more quickly and can do more useful work on the piston. Flame speed is typically between 35 and 50 cm/sec. This is rather low compared to the speed of sound, at which pressure waves travel, or even the average piston speed. It is important to note that the flame propagation is greatly enhanced by turbulence (as in a motor with a squish band combustion chamber).
    The most amazing thing about all this is that you can get the relevant information from most racing gasoline manufacturers. Then, just look at the specification sheet to see what fuel suits you best: Hot running motors and 2-strokes should use fuels wit h a value of "H" that improves their cooling, while more power (and more heat) is obtained from fuels with a high specific energy.
    By the way, pump gas has specific energies which are no better or worse than most racing gasolines. The power obtained from pump gas is therefore often identical to that of racing fuels, and the only reason to run racing fuels would be detonation probl ems, or, since racing fuels are often more consistent than pump gas--which racers call "chemical soup"--a consistent reading of the spark plugs and exhaust pipe.
    Attached Files Attached Files

  4. #4
    Moderator beerdart's Avatar
    Join Date
    Aug 2006

    Detonation Explained

    The mystery of detonation
    Wrenching with Rob--Chemical Soup: The Mystery of Detonation

    By Dr. Robin Tuluie, Ph.D.
    Editor's Note--This is part of a "Wrenching with Rob" series, in which Vintage Editor and Technical Writer Robin Tuluie will discuss, in depth, technical and theoretical topics that make motorcycles function.
    Since the previous Wrenching With Rob, Chemical Soup: The Meaning of Gasoline we've been besieged with questions and comments regarding the combustion process occurring in an engine. In particular, the discussion focused on the problem of detonation, commonly referred to as "knock," which is a very serious and detrimental problem when it occurs - usually the pressures exerted onto the piston top during detonation are much larger (but of a shorter duration, like a pressure spike) than the mean combustion pressure. Nevertheless they are very detrimental to engine life, as the continual high shock loading of the piston, rod, crankshaft and bearings is quite destructive.
    Detonation is the result of an amplification of pressure waves, such as sound waves, occurring during the combustion process when the piston is near top dead center (TDC). The actual "knocking" or "ringing" sound of detonation is due to these pressure waves pounding against the insides of the combustion chamber and the piston top, and is not due to 'colliding flame fronts' or 'flame fronts hitting the piston or combustion chamber walls.'
    Let's look in some detail at how detonation can occur during the combustion process: First, a pressure wave, which is generated during the initial ignition at the plug tip, races through the unburned air-fuel mix ahead of the flame front. Typical flame front speeds for a gasoline/air mixture are on the order of 40 to 50 cm/s (centimeters per second), which is very slow compared to the speed of sound, which is on the order of 300 m/s. In actuality, the true speed of the outwards propagating flame front is considerably higher due to the turbulence of the mixture. Basically, the "flame" is carried outwards by all the little eddies, swirls and flow patterns of the turbulence resident in the air-fuel mix. This model of combustion is called the "eddy burning model" (Blizzard & Keck, 1974).
    Additionally, the genus of the flame front surface - that is the degree of 'wrinkling' - which usually has a fractal nature (you know, those weird, seemingly random yet oddly patterned computer drawings), is increased greatly by turbulence, which leads to an increased surface area of the flame front. This increase in surface area is then able to burn more mixture since more mixture is exposed to the larger flame front surface. This model of combustion is called the "fractal burning model" (Goudin, F.C. et al. 1987, Abraham et al. 1985). The effects of this are observed in so-called "Schlieren pictures," which are high-speed photographs taken though a quartz window of a specially modified combustion chamber (Fig. 1, above).
    Schlieren pictures show the various stages of the combustion process, in particular the highly wrinkled and turbulent nature of the flame front propagation (initially called the flame 'kernel'). A higher degree of turbulence, and hence a higher "effective" flame front propagation velocity can be achieved with a so-called squish band combustion chamber design. Sometimes a swirl-type of induction process, in which the incoming mixture is rotating quickly, will achieve the same goal of increasing the burn rate of the mixture.
    As a general rule-of-thumb the pressure rise in the combustion chamber during the combustion phase is typically 20-30 PSI per degree of crankshaft rotation. Once the pressure rises faster than about 35 PSI/degree, the engine will run very roughly due to the mechanical vibration of the engine components caused by too great of a pressure rise. Sometimes, the pressure wave can be strong enough to cause a self ignition of the fuel, where free radicals (e.g. hydroxyl or other molecules with similar open O-H chains) in the fuel promote this self ignition by the pressure wave. However, this can still occur even without the presence of free radicals; it just won't be quite as likely to happen. This is why high octane fuels, with fewer of these active radicals, can resist detonation better. However, even high octane fuel can detonate - not because of too many free radicals - but because the drastic increase in cylinder pressure has increased the local temperature (and molecular speed) so high that it has reached the ignition temperature of the fuel. This ignition temperature is actually somewhat lower than that of the main hydrocarbon chain of the fuel itself because of the creation of additional radicals resulting from the break-up of the fuel's hydrocarbon chains in intermolecular collisions.
    Detonation usually happens first at the pressure wave's points of amplification, such as at the edges of the piston crown where reflecting pressure waves from the piston or combustion chamber walls can constructively recombine - this is called constructive interference to yield a very high local pressure. If the speed at which this pressure build-up to detonation occurs is greater than the speed at which the mixture burns, the pressure waves from both the initial ignition at the plug and the pressure waves coming from the problem spots (e.g. the edges of the piston crown, etc.) will set off immediate explosions, rather than combustion, of the mixture across the combustion chamber, leading to further pressure waves and even more havoc. Whenever these colliding pressure fronts meet, their destructive power is unleashed on the engine parts, often leading to a mechanical destruction of the motor. The pinging sound of detonation is just these pressure waves pounding against the insides of the combustion chamber and piston top. Piston tops, ring lands and rod bearings are especially exposed to damage from detonation. In addition, these pressure fronts (or shock waves) can sweep away the unburned boundary layer (see figure 2 above) of air-fuel mix near the metal surfaces in the combustion chamber.
    The boundary layer is a thin layer of fuel-air mix just above the metal surfaces of the combustion chamber (see figure 2, above). Physical principles (aptly called boundary conditions) require that under normal circumstances (i.e. equilibrium combustion, which means "nice, slow and thermally well transmitted") this boundary layer stays close to the metal surfaces. It usually is quite thin, maybe a fraction of a millimeter to a millimeter thick. This boundary layer will not burn even when reached by the flame front because it is in thermal contact with the cool metal, whose temperature is always well below the ignition temperature of the fuel-air mix.
    Only under the extreme conditions of detonation can this boundary layer be "swept away" by the high-pressure shock front that occurs during detonation. In that case, during these "far from equilibrium" process of the pressure-induced shock wave entering the boundary layer, the physical principles allured to above (the boundary conditions) will be effectively violated. The degree of violation will depend on (a) the pressure fluctuation caused by the shock front and (b) the adhesive and cohesive strength of the boundary layer. These boundary layers of air-fuel mix remain unburned during the normal combustion process due to their close proximity to the cool metal surfaces and act as an insulating layer and prevent a direct exposure of metal to the flame. Since pressure waves created during detonation can sweep away these unburned boundary layers of air-fuel mix, they leave parts of the piston top and combustion chamber exposed to the flame front. This, in turn, causes an immediate rise in the temperature of these parts, often leading to direct failure or at least to engine overheating.
    Scientists and engineers have recently begun to understand combustion in much greater detail thanks to very ambitious computer simulations that model every detail of the combustion process (Chin et al. 1990). Basically, a complete computer model includes a solution to the thermodynamical problem, that is a solution to the conservation equations and equation of state, as well as a mass burning rate and heat transfer model. In addition, a separate code (called a chemical kinetics code) models the chemical processes which occur during combustion and sometimes juggles several thousand different chemical species, some in vanishingly small concentrations! Needless to say these codes require huge amounts of memory and CPU time that only the largest supercomputers in the world can provide. They are far beyond the reach of the private individual and usually only employed by large research institutions or major car manufactures.
    Here's a brief recital of the question we received:
    Someone asked:

    Rob, I read your "Chemical Soup: The Meaning of Gasoline." Quick question if you have the time... You mentioned that "flame propagation is greatly enhanced by turbulence." Should this be a consideration when an engine is ported? Can turbulence be enhanced by porting without losing the intake flow?
    Unless the ports are specifically designed for a strong swirl-type induction process, the turbulence created during the intake process is not very affected by porting. This is true as long as one sticks with the same general port layout. However, drastic porting changes may increase or decrease the turbulence in the combustion chamber, but it is quite difficult to say anything definite. I think that any improvement gained by porting the engine is likely to be far greater than any possibly detrimental effect the porting may have had on turbulence.
    As far as I know there is only one motorcycle engine that uses a highly turbulent intake process of the swirl type. It's a "homebuild" single cylinder racing engine from Switzerland that uses cross-scavenging and has two pairs of diagonally opposed intake and exhaust valves. Most conventional ports do induce a very small amount of swirl, but this is not important as far as generating much turbulence. Rather, the biggest benefit is obtained by reducing the squish band to it's safe minimum (about 0.020-0.040 in, depending on the particular engine used). This will have a far greater effect on increasing the turbulence in the combustion chamber than any other modification.
    Mike Meagher ( wondered about the effects of the squish band.

    It is important to realize the two important functions of reducing the squish band clearance: (a) to enhance turbulence due to rapid ingestion of gas into the combustion chamber, hence increasing the burning rate of the mixture and (b) to reduce the volume of the unburned gas in the boundary layer of cool gas near the piston top and cylinder head surfaces. Typically, gas trapped in the squish area doesn't burn, even if the squish band clearance is relatively large. The cooling effects of the large surface-area-to-volume ratio of this region will prevent any ignition of the fuel-air mix therein, even if the squish band clearance is rather large. Hence any gas caught in the squish band will not be burned near TDC when it does the most good, but later during the combustion process when one cannot extract as much work from the late-burning gases. The amount of gas trapped in the squish band can actually be a substantially greater amount than just the relative volume of the squish band because the pressure wave from the ignition process literally crams a lot of the unburned gas into crevice areas like the squish band. Reducing the squish band clearance will decrease the amount of unburned gas substantially, leading to more complete and faster combustion, lower emissions and improved power. It is one of the few "all gain with no pain" modifications one can carry out on racing or even street motorcycles.
    Someone wondered: Is the extra cooling of the squish band less than the added heat?

    Basically the mixture in the squish region is in thermal contact with the cylinder wall and piston top and at roughly the same temperature, which is quite lower than the burn temperature. Reducing squish will decrease the amount of the cool gas in the squish region and increase the amount of hot gas in the burn region. A reduced squish clearance will increase temperatures a little even if the compression ratio is held constant. There is no "extra cooling" mechanism if you reduce the squish band clearance. The cooling rate of the gas in the squish zone depends on the thermal conductivity of the gas-metal interface, on the total surface area of this interface and the temperature difference between gas and metal. Note that these factors are all essentially constant at TDC and don't depend on the squish clearance. Hence the cooling rate is the same for large squish clearances and for small squish clearances. Thus there is no "extra cooling" mechanism if you reduce squish band clearance.
    David Goodenough ( asked:

    Suppose I mix one gallon of 87 octane pump gas, and one gallon of 92 octane pump gas. Are you telling me that instead of two gallons of 89.5 octane gas I have something closer to 92 (like between 90 and 91)?
    The mixed gas' octane rating will in general not be a linear function of the original constituents' octane ratings. Neither will it be a simple function in most cases. Rather, the octane rating becomes a quite complicated, non-linear function of some very small amounts of free radicals, such as hydroxyl and hydroxen peroxide, in the fuel. Essentially, there is no simple analytic way to predict the final octane rating of a fuel; rather, extensive tests with a calibrated engine are necessary (see MON and RON explanations in the last article).
    David also asked:

    While I'm at it, how does the energy per ounce of mixture react?
    As mentioned before, the "energy per ounce" (more exactly the Specific Energy for an stoichometric [an ideal] mixture) does not vary much at all between different kinds of pump gasoline or even racing gasoline.
    Ramon Hontiveros ( wrote:

    Ok, I got the article and read it, now some questions: Isn't the fuel already in gaseous form due to carburation?
    Ramon, the air fuel mix as it flows into the combustion chamber is not perfectly atomized, that is the fuel vapor droplets consist of larger droplets of fuel molecules surrounded by air. It takes additional energy to further atomize this vapor, that is to break the hydrostatic forces (the surface tension of the fuel droplet). This additional energy can be taken from a hot surface (such as the piston crown, etc.), which then leads to a cooling of the piston. The additional energy can also be imparted via large turbulences and pressure waves, as in a squish band-type motor, which will help to further atomize the fuel. Note that the term "atomize" is actually misleading since the molecules are still left intact, that is the hydrocarbon chains (and oxygen bonds for alcohols) are not broken.
    Ramon also wondered:

    does carburation just "spray" the gas into the air flow as tiny droplets which are thus still in liquified form?
    Ramon also asks:

    Also, if the fuel does evaporate quickly and creates additional pressure - thus reducing the amount of fresh charge - then the engine will produce less horsepower, right?
    Correct. The horsepower will depend on the volumetric efficiency of the engine which is a function of the pressure difference between ambient air and cylinder pressures. If additional fuel is vaporized inside the combustion chamber the pressure in the cylinder will rise, and, while the valves/ports are still open, reduce the volumetric efficiency, and thus the power output.
    So 2-strokes would benefit from using fuel that has a _lower_ heat of vaporisation rating?
    Correct. A fuel with a lower heat of vaporisation will "atomize" easier and thus improve engine cooling, but decrease power somewhat.
    So which type of fuel has a lower heat of vaporisation? Leaded or unleaded?
    A fuel's heat of vaporisation does not depend on the it's lead content. Rather, it depends on the fuel's main hydrocarbon chains; iso-octane verses n-heptane, for example. Since pump gas can consist of up to 20 different components with a wide range of individual boiling points (We were serious when we called it "chemical soup!") one should look at the specifications sheet for each fuel separately. For racing fuels these are available from the manufacturer.
    Lastly, I gather from the article that it's okay if you end up mixing some leaded fuel with the remaining unleaded fuel in the tank?
    Most fuels, pump or racing, will give about the same energy release, so when switching from pump to racing fuel (in general) do not expect a drastic increase in power. Mixing leaded fuel with the remaining unleaded fuel in the tank has no advantage and will give inconsistent plug readings; hence I wouldn't do it on a race bike. REFERENCES
    Abraham, J. et al., 1985, "A Discussion of Turbulent Flame Structure in Premixed Charges", SAE paper 850345
    Blizzard, N.C. and Keck, J.C., 1974, "Exp. and Theo. Investigation of Turbulent Burning Model for Internal Combustion Engines", SAE paper 740191
    Chin et al., 1990, "Diagnostics and Modeling of Combustion in Internal Combustion Engines," JSME, Tokyo, p. 81-86 Goudin, et al., 1987, "An Application of Fractals to Modeling of Premixed Turbulent Flames", Combustion and Flame 68, p.249-266
    Attached Files Attached Files

  5. #5
    Moderator beerdart's Avatar
    Join Date
    Aug 2006

    Expansion Chambers?

    How Two-Stroke Expansion Chambers Work, and Why You Should Care.

    By Eric Murray You know that changing the exhaust pipes on your two-stroke motorcycle can have a marked effect on the engine's power characteristics, but do you know why?
    Simply put, it's because the two-stroke exhaust system, commonly referred to as an 'expansion chamber' uses pressure waves emanating from the combustion chamber to effectively supercharge your cylinder.
    In reality, expansion chambers are built to harness sound waves (created in the combustion process) to first suck the cylinder clean of spent gasses--and in the process, drawing fresh air/gas mixture (known as 'charge') into the chamber itself--and then stuff all the charge back into the cylinder, filling it to greater pressures than could be achieved by simply venting the exhaust port into the open atmosphere. This phenomenon was first discovered in the 1950s by Walter Kaaden, who was working at the East German company MZ. Kaaden understood that there was power in the sound waves coming from the exhaust system, and opened up a whole new field in two-stroke theory and tuning.
    An engine's exhaust port can be thought of as a sound generator. Each time the piston uncovers the exhaust port (which is cut into the side of the cylinder in two-strokes), the pulse of exhaust gases rushing out the port creates a positive pressure wave which radiates from the exhaust port. The sound will be be the same frequency as the engine is turning, that is, an engine turning at 8000 rpms generates an exhaust sound at 8000 rpms or 133 cycles a second--hence, an expansion chamber's total length is decided by the rpm the engine will reach, not displacement.
    Of course those waves don't radiate in all directions since there's a pipe attached to the port. Early two strokes had straight pipes, a simple length of tube attached to the exhaust port. This created a single "negative" wave that helped suck spent exhaust gases out of the cylinder. And since sound waves that start at the end of the pipe travel to the other end at the speed of sound, there was only a small rpm range where the negative wave's return would reach the exhaust port at a useful time: At too low of an rpm, the wave would return too soon, bouncing back out the port. And at too high of an rpm, the piston would have traveled up the cylinder far enough to close the exhaust port, again doing no good.
    Indeed, the only advantage to this crude pipe system was that it was easy to tune: You simply started with a long pipe and started cutting it off until the motor ran best at the engine speed you wanted.
    So after analyzing this cut-off straight-pipe exhaust system, tuners realized two things: First, that pressure waves could be created to help pull spent gasses out of the cylinder, and second, that the speed of these waves is more or less constant, though it's affected slightly by the temperature of the air. Higher temperatures mean that the air molecules have more energy and move faster, so sound waves move faster when the air is warmer.
    A complicating factor here is that changes in the shape of the tube cause reflections, or changes, in the sound waves: Where the section of the tube grows in diameter, there will be sound waves reflected back towards the start of the tube. These waves will be the opposite of the original waves that they reflected from, so they will also be negative pressure waves. Aha! The next important discovery was made--by gradually increasing the diameter of the tube, a gradual, more useful negative wave could be generated to help scavenge, or pull spent gasses out of, the cylinder.
    Adding Divergent Tubes, which used to be called "Megaphones," to Two-Stroke Pipes Helped Make Useful Power

    Putting a divergent cone on the end of a straight pipe lengthens the returning wave, broadening the power band and creating a rudimentary expansion chamber.
    So, to sum up, when the negative wave reaches the exhaust port at the correct time, it will pull some of the exhaust gases out the cylinder, helping the engine to scavenge its spent exhaust gas. And putting a divergent cone at the end of the straight (parallel) "head" pipe broadens the returning wave. The returning negative wave isn't as strong, but it is longer, so it is more likely to find the exhaust port open and be able to pull out the exhaust gases. As with plain, straight pipes, the total length of the pipe with a divergent cone welded on determines the timing of the return pulses and therefore the engine speed at which they are effective. The divergent cone's critical dimensions are where it starts (the distance from the exhaust port to the start of the divergent cone is called the "head" pipe), while the length of the megaphone and the rate at which it diverges from the straight pipe determine the intensity and length of the returning wave--A short pipe which diverges at a sharp angle from the head pipe gives a stronger, more straight-pipe-like pulse. Conversely, a long, gradual divergent cone creates a smaller pulse of longer duration.
    In addition, the negative wave is also strong enough to help pull fresh mixture up through the transfer ports.
    And while adding a divergent cone to the head pipe produced great tuning advantages, it had its limitations, too: The broader negative wave from a megaphone can still arrive too early and pull fresh mixture out of the cylinder. That's exactly the problem that Walter Kaaden had with the factory MZs. He realized that putting another cone, reversed to be convergent, on the end of the first divergent pipe would reflect positive waves back up the pipe. These positive waves would follow the negative waves back to the exhaust port, and if properly timed would stuff the fresh mixture that was pulled into the pipe back into the exhaust port right as the piston closed the port. Kaaden immediately realized a large power gain, and the expansion chamber was born.
    In addition to head pipe length, divergent and convergent cone lengths, an expansion chamber has three more crucial dimensions. The length of the straight 'belly' between the divergent and the convergent cones, the length of the tailpiece 'stinger', or muffler, and the diameter of the belly section. The stinger acts as a pressure bleed, allowing pressure to escape from the pipe. Back pressure in the pipe, caused by a smaller-diameter or longer stinger section, helps the wave action of the pipe, and can increase the engine's performance. This, presumably, happens since the greater pressure creates a more dense, uniform medium for the waves to act on--waves travel better through dense, consistent mediums. For instance, you can hear a train from a long way away by putting you ear to the steel railroad track, which is much denser and more uniform than air. But it also causes the engine to run hotter, usually a very bad characteristic in two-strokes.
    The length of the belly section determines the relative timing between the negative and positive waves. The timing of the waves is determined by the length of the straight pipe. If the belly section is too short, positive waves have a shorter distance to travel, and return to the exhaust port sooner. This is good if the engine is running at a higher speed, bad if you want to ride on the street. The diameter of the belly section is crucial for one simple reason: ground clearance. It's hard to keep big, fat pipes off the ground, though V-Fours have solved that for now since two of the pipes exit directly out the back.
    A complete two-stroke pipe has properly tuned header, convergent, belly, divergent and stinger sections--a difficult process.
    As the forces in a two-stroke pipe design have become more well-understood, designers have been able to create engines that take more advantage of them and in fact require an expansion chamber to run at all. For instance, a modern pipe has a gently divergent head pipe to keep gas velocity high near the port, a second cone of "medium" divergence, and a third divergent cone with a strong taper. A belly section connects to multi-angled convergent cones, which should exit in a straight line into the stinger for good power. As you can see, modern two-stroke expansion chambers create a complex scenario and are quite difficult to tune. Stay tuned to upcoming issues of Motorcycle Online for reviews of software that promises to simplify pipe design.
    Attached Files Attached Files

  6. #6
    Moderator beerdart's Avatar
    Join Date
    Aug 2006

    Technical articles previously published in Personal Watercraft Illustrated magazine.

    Technical articles previously published in Personal Watercraft Illustrated magazine.

    Good Stuff

    New link
    Last edited by beerdart; 11-05-2008 at 12:24 PM.

  7. #7
    Connecticut CrazyA's Avatar
    Join Date
    Nov 2005

    More plug reading

    I wanted to add this as I still think this is more useful, albeit a little more difficult, than just looking at the "tips" as so many often do.
    There's a tool to help with this as well to make it a little easier.

    Don't miss the pdf. under the pictures.

    Attached Thumbnails Attached Thumbnails Click image for larger version. 

Name:	ADC1.jpg 
Views:	458 
Size:	103.8 KB 
ID:	26154   Click image for larger version. 

Name:	ADC2.jpg 
Views:	427 
Size:	101.9 KB 
ID:	26155   Click image for larger version. 

Name:	ADC3.jpg 
Views:	457 
Size:	105.6 KB 
ID:	26156   Click image for larger version. 

Name:	ADC4.jpg 
Views:	422 
Size:	97.8 KB 
ID:	26157  
    Attached Files Attached Files

  8. #8
    ph2ocraft's Avatar
    Join Date
    Apr 2006
    Campbell, Ca.

    How a TWO stroke operates

Thread Information

Users Browsing this Thread

There are currently 1 users browsing this thread. (0 members and 1 guests)

Similar Threads

  1. How does the carbon seal and PTO carrier bearing work
    By imp0ster in forum 4-Tec Performance
    Replies: 8
    Last Post: 01-25-2013, 01:22 PM
  2. Replies: 3
    Last Post: 11-19-2010, 08:51 AM
  3. Pro cdi and 780 will not work on 94 650..
    By Rodneyae in forum Polaris Open Discussion
    Replies: 25
    Last Post: 05-16-2007, 07:48 PM
  4. Mudbug Article And Kerry Interview (Magazine Scanned)
    By ABBOTT in forum Yamaha PWC Performance (2-stroke)
    Replies: 3
    Last Post: 10-02-2006, 03:08 PM
    By ABBOTT in forum Yamaha How To & FAQs
    Replies: 1
    Last Post: 02-17-2006, 08:05 PM

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts